Circuit Depth Relative to a Random Oracle
نویسنده
چکیده
منابع مشابه
The Polynomial Hierarchy, Random Oracles, and Boolean Circuits∗
We give an overview of a recent result [RST15] showing that the polynomial hierarchy is infinite relative to a random oracle. Since the early 1980s it has been known that this result would follow from a certain “average-case depth hierarchy theorem” for Boolean circuits. In this article we present some background and history of related relativized separations; sketch the argument showing how th...
متن کاملCircuit Size Relative to Pseudorandom Oracles
Circuit size complexity is compared with deterministic and nondeterministic time complexity in the presence of pseudorandom oracles The following separations are shown to hold relative to every pspace random oracle A and relative to almost every oracle A ESPACE i NP is not contained in SIZE n for any real ii E is not contained in SIZE n n Thus neither NP nor E is contained in P Poly In fact the...
متن کاملA Counterexample to the Generalized Linial-Nisan Conjecture
In earlier work [1], we gave an oracle separating the relational versions of BQP and the polynomial hierarchy, and showed that an oracle separating the decision versions would follow from what we called the Generalized Linial-Nisan (GLN) Conjecture: that “almost k-wise independent” distributions are indistinguishable from the uniform distribution by constant-depth circuits. The original Linial-...
متن کاملOn monotone circuits with local oracles and clique lower bounds
We investigate monotone circuits with local oracles [Krajíček, 2016], i.e., circuits containing additional inputs yi = yi(~x) that can perform unstructured computations on the input string ~x. Let μ ∈ [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(~x), and Un,k,Vn,k ⊆ {0,1}m be the set of k-cliques and the set of complete (k−1)-par...
متن کاملRelating Polynomial Time to Constant Depth
Going back to the seminal paper [FSS84] by Furst, Saxe, and Sipser, analogues between polynomial time classes and constant depth circuit classes have been considered in a number of papers. Oracles separating polynomial time classes have been obtained by diagonalization making essential use of lower bounds for circuit classes. In this note we show how separating oracles can be obtained uniformly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 42 شماره
صفحات -
تاریخ انتشار 1992